The Thermodynamics of Computation--a Review
نویسنده
چکیده
Computers may be thought of as engines for transforming free energy into waste heat and mathematical work. Existing electronic computers dissipate energy vastly in excess of the mean thermal energy kT, for purposes such as maintaining volatile storage devices in a bistable condition, synchronizing and standardizing signals, and maximizing switching speed. On the other hand, recent models due to Fredkin and Toffoli show that in principle a computer could compute at finite speed with zero energy dissipation and zero error. In these models, a simple assemblage of simple but idealized mechanical parts (e.g., hard spheres and flat plates) determines a ballistic trajectory isomorphic with the desired computation, a trajectory therefore not foreseen in detail by the builder of the computer. In a classical or semiclassical setting, ballistic models are unrealistic because they require the parts to be assembled with perfect precision and isolated from thermal noise, which would eventually randomize the trajectory and lead to errors. Possibly quantum effects could be exploited to prevent this undesired equipartition of the kinetic energy. Another family of models may be called Brownian computers, because they allow thermal noise to influence the trajectory so strongly that it becomes a random walk through the entire accessible (lowpotential-energy) portion of the computer's configuration space. In these computers, a simple assemblage of simple parts determines a low-energy labyrinth isomorphic to the desired computation, through which the system executes its random walk, with a slight drift velocity due to a weak driving force in the direction of forward computation. In return for their greater realism, Brownian models are more dissipative than ballistic ones: the drift velocity is proportional to the driving force, and hence the energy dissipated approaches zero only in the limit of zero speed. In this regard Brownian models resemble the traditional apparatus of thermodynamic thought experiments, where reversibility is also typically only attainable in the limit of zero speed. The enzymatic apparatus of DNA replication, transcription, and translation appear to be nature's closest approach to a Brownian computer, dissipating 20-100kT per step. Both the ballistic and Brownian computers require a change in programming style: computations must be rendered logically reversible, so that no machine state has more than one logical predecessor. In a ballistic computer, the merging of two trajectories clearly cannot be brought about by purely conservative forces; in a Brownlan computer, any extensive amount of merging of computation paths
منابع مشابه
A review of quantum thermodynamics
In this article, we present a brief and elementary review of quantum thermodynamics and its achievements and challenges. This review includes an introduction to some fundamental concepts such as internal energy, heat, work, entropy, entropy production, thermal equilibrium, second law of quantum thermodynamics, relation between thermodynamics and information theory, as well as a discussion of ho...
متن کاملThermodynamics of statistical inference by cells.
The deep connection between thermodynamics, computation, and information is now well established both theoretically and experimentally. Here, we extend these ideas to show that thermodynamics also places fundamental constraints on statistical estimation and learning. To do so, we investigate the constraints placed by (nonequilibrium) thermodynamics on the ability of biochemical signaling networ...
متن کاملMaxwell ’ s Demon and the Thermodynamics of Computation Jeffrey Bub
It is generally accepted, following Landauer and Bennett, that the process of measurement involves no minimum entropy cost, but the erasure of information in resetting the memory register of a computer to zero requires dissipating heat into the environment. This thesis has been challenged recently in a two-part article by Earman and Norton. I review some relevant observations in the thermodynam...
متن کاملThermodynamics of Computation
It is generally accepted, following Landauer and Bennett, that the process of measurement involves no minimum entropy cost, but the erasure of information in resetting the memory register of a computer to zero requires dissipating heat into the environment. This thesis has been challenged recently in a two-part article by Earman and Norton. I review some relevant observations in the thermodynam...
متن کاملAnalysis of Drug-Drug Interactions with Cyclic Voltammetry: An Overview of Relevant Theoretical Models and Recent Experimental Achievements
In this review, we focus on cyclic voltammetry as a reliable electrochemical technique to study mechanisms, kinetics and thermodynamics of various types of drug-drug interactions. While we present and discuss six theoretical models relevant to analyze drug-drug (or drug-DNA) interactions, we also give hints about recent experimental achievements in this field. In addition, we provide the reader...
متن کاملar X iv : h ep - p h / 06 09 27 1 v 1 2 6 Se p 20 06 Pressure of the standard model
We review the computation of the thermodynamic pressure of the entire minimal standard model to three loop order, performed in [ 1].
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005